A Recursive Trust–Region Method for Non–convex Constrained Minimization
نویسندگان
چکیده
منابع مشابه
A Primal-dual Trust-region Algorithm for Minimizing a Non-convex Function Subject to General Inequality and Linear Equality Constraints a Primal-dual Trust-region Algorithm for Non-convex Constrained Minimization
A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.
متن کاملAn active-set trust-region method for derivative-free nonlinear bound-constrained optimization
We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in [24]. Considering an active-set method in modelbased optimization creates the opportunity of saving a substantial amount of function evaluations when mainta...
متن کاملConvergent Infeasible Interior-Point Trust-Region Methods for Constrained Minimization
We study an infeasible interior-point trust-region method for constrained minimization. This method uses a logarithmic-barrier function for the slack variables and updates the slack variables using second-order correction. We show that if a certain set containing the iterates is bounded and the origin is not in the convex hull of the nearly active constraint gradients everywhere on this set, th...
متن کاملA Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems
BOUND-CONSTRAINED MINIMIZATION PROBLEMS MARY ANN BRANCH , THOMAS F. COLEMAN AND YUYING LI Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the converg...
متن کاملA primal-dual trust-region algorithm for non-convex nonlinear programming
A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Numerical results are presented for general quadratic pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008